A model of H-NS mediated compaction of bacterial DNA.

نویسندگان

  • Marc Joyeux
  • Jocelyne Vreede
چکیده

The histone-like nucleoid structuring protein (H-NS) is a nucleoid-associated protein, which is involved in both gene regulation and DNA compaction. H-NS can bind to DNA in two different ways: in trans, by binding to two separate DNA duplexes, or in cis, by binding to different sites on the same duplex. Based on scanning force microscopy imaging and optical trap-driven unzipping assays, it has recently been suggested that DNA compaction may result from the antagonistic effects of H-NS binding to DNA in trans and cis configurations. To get more insight into the compaction mechanism, we constructed a coarse-grained model description of the compaction of bacterial DNA by H-NS. These simulations highlight the fact that DNA compaction indeed results from the subtle equilibrium between several competing factors, which include the deformation dynamics of the plasmid and the several binding modes of protein dimers to DNA, i.e., dangling configurations, cis- and trans-binding. In particular, the degree of compaction is extremely sensitive to the difference in binding energies of the cis and trans configurations. Our simulations also point out that the conformations of the DNA-protein complexes are significantly different in bulk and in planar conditions, suggesting that conformations observed on mica surfaces may differ significantly from those that prevail in living cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of H-NS on the elongation and compaction of single DNA molecules in a nanospace.

The effect of the bacterial heat-stable nucleoid-structuring protein (H-NS) on the conformation of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. With increasing concentration of H-NS, the DNA molecules either elongate or contract. The conformational response is related to filamentation of H-NS on DNA through oligomerization and H-NS mediated bridg...

متن کامل

H-NS promotes looped domain formation in the bacterial chromosome

The bacterial chromosome is organized into loops, which constitute topologically isolated domains. It is unclear which proteins are responsible for the formation of the topological barriers between domains. The abundant DNA-binding histone-like nucleoid structuring protein (H-NS) is a key player in the organization and compaction of bacterial chromosomes [1,2]. The protein acts by bridging DNA ...

متن کامل

A biomechanical mechanism for initiating DNA packaging

The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a ...

متن کامل

Gene silencing H-NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility

Nucleoid-associated proteins are bacterial proteins that are responsible for chromosomal DNA compaction and global gene regulation. One such protein is Escherichia coli Histone-like nucleoid structuring protein (H-NS) which functions as a global gene silencer. Whereas the DNA-binding mechanism of H-NS is well-characterized, its paralogue, StpA which is also able to silence genes is less underst...

متن کامل

E↵ects of Hfq on the conformation and compaction of DNA

Hfq is a bacterial pleiotropic regulator that mediates several aspects of nucleic acids metabolism. The protein notably influences translation and turnover of cellular RNAs. Although most previous contributions concentrated on Hfq’s interaction with RNA, its association to DNA has also been observed in vitro and in vivo. Here, we focus on DNA-compacting properties of Hfq. Various experimental t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 104 7  شماره 

صفحات  -

تاریخ انتشار 2013